策略分享-蓝筹股小盘股混合策略
一、引言
在 A 股市场中,小盘股往往具备高成长潜力但波动较大,蓝筹股则以稳定分红和低波动为特征。如何平衡两类资产的风险与收益,是许多投资者关注的核心问题。本文分享一套量化策略 —— 通过混合小盘股与蓝筹股的股票池,结合组合优化动态调整权重,在控制不确定性风险的同时,捕捉不同市场环境下
由bq9e696k创建,最终由bqv93dy2更新于
在 A 股市场中,小盘股往往具备高成长潜力但波动较大,蓝筹股则以稳定分红和低波动为特征。如何平衡两类资产的风险与收益,是许多投资者关注的核心问题。本文分享一套量化策略 —— 通过混合小盘股与蓝筹股的股票池,结合组合优化动态调整权重,在控制不确定性风险的同时,捕捉不同市场环境下
由bq9e696k创建,最终由bqv93dy2更新于
本文件提供 BigQuant Python API 的使用说明,包括用户管理、策略运行、策略查询等功能。
前置代码(Python)
from bigquant.api import strategy, user, run
\
由qxiao创建,最终由qxiao更新于
(1) Sharpe Ratio(夏普比率)
定义:夏普比率是衡量投资回报与风险的比值,反映单位风险所获得的超额收益。\n公式为:
测试筛选策略不同时期的风格是否会有变化?
结论一:没变化。策略采用一个小市值因子 c_pct_rank(total_market_cap),结果发现收益率波动跟市场风格的市值收益率完全相反,证明市场风格和市场因子吻合度非常高。

由godspeedgld创建,最终由godspeedgld更新于
由godspeedgld创建,最终由godspeedgld更新于
5月20日,采用小市值策略,5月27日轮动为流动性因子策略
策略 | 执行过程 | 策略因子相关性 |
---|---|---|
小市值 | 
由william_gan创建,最终由william_gan更新于
影响策略效果的因子有很多,每个人所选择的因子也各有不同,选取因子后,如何分析数据,找出有效选股逻辑模型就成为重点。该数据分析工作是策略逻辑编写中最耗时的部分,本文介绍,如何简化数据分析的工作:数据标准化处理
举例说明:
当天收益因子:5000支票,可能会有1000+个不同的值,如:1
由bqpguj9o创建,最终由bqpguj9o更新于
基于随机森林模板,选了37个因子根据随机森林重要性排序。
保留前面9个最重要的因子,结果如下
然后Enter
由small_q创建,最终由stephen1231234更新于
我只是跟 QuantAgent 聊了几句天、每次加一两个小条件,结果最后跑出来的回测年化收益率 60%+。 过程比点外卖还简单——点开对话框、打字、回车、等几秒钟。
可以把它想象成一个会写代码、会调数据、还懂交易策略的“量化机器人”。
由bq12wety创建,最终由bq12wety更新于
由small_q创建,最终由small_q更新于
一、尝试用不同的大模型实现因子的挖掘:
目的测试国内的主流大模型,看哪个大模型的能力更适合挖掘因子
提示词:
user = """
日期为2022-01-01到2024-01-01
我想做一个流动性增强因子
"""
qwen_plus:
由bqz709ry创建,最终由bqz709ry更新于